
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 3, October 2006

Observing Locally Self-stabilization in a Probabilistic Way

Joffroy Beauquier,∗ Laurence Pilard,† and Brigitte Rozoy‡

LRI - CNRS UMR 8623, Université Paris-Sud, 91405 Orsay, France

A self-stabilizing algorithm cannot detect by itself that stabilization has been reached. For
overcoming this drawback Lin and Simon introduced the notion of an external observer:
a set of processes, one being located at each node, whose role is to detect stabilization.
Furthermore, Beauquier, Pilard and Rozoy introduced the notion of a local observer: a
single observing entity located at a unique node. This entity does not detect false stabiliza-
tion, eventually detects stabilization, and does not interfere with the observed algorithm. We
introduce here the notion of probabilistic observer which realizes the conditions above with
probability 1. We show that computing the size of an anonymous ring with a synchronous self-
stabilizing algorithm cannot be observed deterministically. We prove that some synchronous
self-stabilizing solution to this problem can be observed probabilistically.

I. Introduction

THE notion of self-stabilization was introduced by Dijkstra1. An algorithm was defined as self-stabilizing when
“regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite number of steps”. Such

a property is very desirable for any distributed algorithm, because after any unexpected perturbation modifying the
memory state, the algorithm eventually recovers and returns to a legitimate state, without any outside intervention.

Dijkstra’s notion of self-stabilization, which originally had a very narrow scope of application, is proving to
encompass a formal and unified approach to fault-tolerance under a model of transient failures for distributed
algorithms2,3.

It has been objected to the self-stabilizing approach that 1) a self-stabilizing algorithm only eventually recovers,
involving that during some time the behaviour is not correct, 2) a process can never know whether or not the algorithm
is stabilized2.

There is little that you can do against the first point because it is inherently bounded to the very definition of
self-stabilization.

There is a few paper dealing with the second issue, even if there is a lot of works dealing with control of distributed
algorithms such as snapshot computations or predicate detection techniques4–13. All these papers present algorithms
which either do not deal with failures, or with crash failures only, or do not give any safety condition about the
result after a failure. In this paper, we present a method of self-stabilization detection such that when stabilization is
detected after a failure, the system is stabilized.

The only solutions satisfying this safety condition are the important paper by Lin and Simon14 and the paper15.
Obviously, no detection of stabilization from the inside is possible since any local variable used for that purpose could
be corrupted. Meanwhile it is perfectly feasible to detect stabilization from the outside (for instance and although it
is just a theoretical remark, when a bound on the number of steps before stabilization is known, simply by counting).
“From the outside” can be replaced by “from the inside but using stable memory” (memory not subject to failures).

Received 2 September 2005; revision received 20 March 2006; accepted for publication 5 June 2006. Copyright © 2006 by
the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.∗ beauquier@lri.fr
† pilard@lri.fr
‡ rozoy@lri.fr

516

BEAUQUIER, PILARD, AND ROZOY

By restricting their attention to ring networks, Lin and Simon14 propose a new model, in which it is meaningful
to say that a process knows that the ring is stable. This model introduces the notion of a distributed observer, located
at each node of the network. This observer is responsible for detecting stabilization and does not influence the
self-stabilizing protocol. As the observer involves, at each node, the presence of a stable memory, such a distributed
observer is suited only for small local area networks, in which strong security and reliability can be ensured. It is
unrealistic for large or heterogeneous networks.

In15, a local observer has been introduced. This local observer is located at only one node of the network, then
only one node has to dispose of some stable memory. The local observer is responsible for detecting stabilization and
does not influence the self-stabilizing protocol. In15, it is proven that if there exists a synchronous self-stabilizing
distributed solution for some problem in a distinguished network, then there exists a synchronous self-stabilizing
distributed solution, not necessarily the same, for the same problem, that can be observed by a local observer.

In this paper, we raise the question of determining whether or not the stabilization detection is feasible by a local
observer in an anonymous and synchronous network. We prove that there exists a self-stabilizing algorithm for some
problem P, for which there is no deterministic observation. Then we introduce the notion of local and probabilistic
observer and we prove that such an observer can detect the stabilization of another self-stabilizing algorithm solving P.

The plan of the paper is the following. First, we describe the distributed systems and we introduce the formal
definition of a local and probabilistic observer. Then, we prove that the problem of determining the size of a syn-
chronous, anonymous and one-way ring cannot be observed by a local deterministic observer. Next, we propose
a self-stabilizing algorithm which computes the size of a synchronous, anonymous and one-way ring. Finally, we
prove that this algorithm can be observed by a local and probabilistic observer.

The present paper is a full version of16.

II. Model
In this section, we define a distributed algorithm and we state what it means for a distributed algorithm to be

self-stabilizing. We use the classical model for distributed algorithms of3 and the notion of a local observer of15. We
recall the definition of a deterministic observer and we define a probabilistic observer.

A. Distributed Algorithm

Definition 2.1 (Distributed algorithm). A distributed algorithm A = (C, λ, T) is an automaton, where C is the
set of all states (called configurations) of A, λ is the set of labels (called actions) and T is the set of all transitions
of A: T ⊂ C × λ × C.

In a probabilistic distributed algorithm, there is a probabilistic law on the output of a transition such that in each
configuration the sum of the probabilities associated to each outgoing transition with the same action is 1.

Definition 2.2 (Execution). An execution of A, noted e = c1a1c2a2 . . . is a maximal sequence of alternating
configurations and actions of A where (ci, ai, ci+1) is a transition of A.

The sequence is maximal if it is either infinite, or it is finite but there is no outgoing transition from the
last configuration.

We use a synchronous mode of communication, in which a global clock that generates an infinite sequence of
pulses, equally spaced in time, is connected to all the processes in the network. The time interval between two
consecutive pulses of the clock is a round. At the beginning of each round, each process decides, according to its
state, what messages to send and on which links to send them. Each process then executes a finite number of internal
actions, and finally receives any messages send to it by any of its neighbors in this round.

We consider anonymous networks in which processes have no identifiers and the same code. In such networks, it
is impossible to distinguish between two distinct processes. We also use the notion of distinguished network that is
a network where exactly one process can be distinguished from the others.

The formal definition of a self-stabilizing probabilistic algorithm can be state using the formulation of Lynch and
Segala17,18. This formulation uses the notion of probability space and cone.

517

BEAUQUIER, PILARD, AND ROZOY

Definition 2.3 (Probability space). A probability space is a triplet (�, F, Pr) where � is a set, F is a collection of
subsets of � that is closed under complement and countable union and such that � ∈ F , and Pr is a function from
F to [0, 1] such that Pr (�) = 1 and for any collection {Ci}i of at most countably many pairwise disjoint elements
of F , Pr (∪iCi) = ∑

i Pr (Ci).

The set � contains the objects that we want to analyze: the set of executions of a probabilistic distributed algorithm.
The set F contains the subsets of � that we can measure. Finally, Pr is a function that associates a measure with
each element of F .

Definition 2.4 (Cone). Let A be a probabilistic distributed algorithm. A cone Vh of A is the set of all A’s executions
with the common prefix h. h is called the history of the cone. We note |h| the length of h.

In this paper, we consider that specifications are predicate over configurations.
In the two following definitions, the convergence and correctness properties are probabilistic as in19.
Furthermore, in the following definition, these notations are used: let A be a probabilistic distributed algorithm,

SP be the specification of A, and C be a subset of the set of configurations of A. We note EC the set of maximal
executions of A reaching a configuration in C and we note EC.SP the set of maximal executions of A reaching a
configuration in C and then from this configuration verifying SP . Finally, we note Vh a cone of A. We consider the
probability space (�, F, Pr) where � is the whole executions of A and F is the closure of � under the operation
of definition 2.5.

Definition 2.5. A probabilistic distributed algorithm A is self-stabilizing for a specification SP if and only if there
exists a sub-set CL (legitimate configurations) of the set of the configurations of A such that:

• (probabilistic convergence) The probability of the set of maximal executions of A reaching a configuration in
CL is equal to 1, i.e. the probability for ECL

is equal to 1. Formally:

lim|h|→+∞ Pr (Vh ∩ ECL
) = 1

• (probabilistic correctness) The probability of the set of maximal executions of A reaching a configuration in
CL and then from this legitimate configuration verifying SP is equal to 1, i.e. the probability for ECL.SP is
equal to 1. Formally:

lim|h|→+∞ Pr (Vh ∩ ESP) = 1

For a sake of clarity, we will use for the proof a simpler but equivalent definition of probabilistic self-stabilization.
Let e be an execution of A that is not maximal. We note last(e), the last configuration of e and |e| the length of e.

We say that e′ is a continuation of e if and only if there exists an execution E of A such as ee′ is a prefix of E.

Definition 2.6. A probabilistic distributed algorithm A is self-stabilizing for a specification SP if and only if there
exists a sub-set CL (legitimate configurations) of the set of the configurations of A such that:

• (probabilistic convergence) the probability of the set of maximal executions of A reaching a configuration in
CL is equal to 1. Formally, noting e an execution of A that is not maximal,

lim|e|→+∞ Proba(last(e) ∈ CL) = 1

• (probabilistic correctness) the probability of the set of maximal executions of A reaching a configuration in
CL and then from this legitimate configuration verifying SP is equal to 1. Formally, noting e an execution of
A that is not maximal,

lim|e|→+∞ Proba(∀e′ a continuation of e : last(ee′) verifies SP) = 1

518

BEAUQUIER, PILARD, AND ROZOY

B. Observer
As described in15, an observer has the following features. (1) The observer is located at a process of the network.

If the network is anonymous, the location of the observer is arbitrary. (2) The observer is not allowed to detect
stability with any information depending on the network (for instance the size). (3) The observer cannot interfere
with the algorithm, which means that the executions of the algorithm are the same with or without the observer. (4)
The observer is not subject to any type of corruption. (5) The observer observes the behavior of the local process
(sequential sequence of instructions) and tries to match part of this behavior with some predefined sequences. (6)
The announcement of the stabilization obeys some safety and liveness conditions.

The observer can be viewed as a mechanism having a predetermined set of sequences of actions as a parameter.
The mechanism observes the local behavior of a process and continuously tries to match one of its sequences to the
observed behavior. As soon as a matching is performed, the observer announces the stabilization.

The observer must satisfy three conditions:
1. Safety. The observer does not announce if the algorithm is not stabilized.
2. Liveness. Once the algorithm is stabilized, the observer eventually announces.
3. Non-interference. The executions of the algorithm are the same with or without the observer.

Definition 2.7 (Deterministic observer). If A is a self-stabilizing algorithm and O a deterministic observer of A,
we have: (safety) as long as A is not stabilized, O returns false, and (liveness) once A is stabilized, O eventually
returns true. We say that A is an observable algorithm.

The deterministic and probabilistic observers have different safety condition. A probabilistic observer is defined
with a parameter α.

Definition 2.8 (Probabilistic observer). If A is a self-stabilizing algorithm and Oα a probabilistic observer of A,
we have:
(liveness) the observer eventually announces the stabilization with probability one; (safety) ∀ε ∈]0, 1], ∃α used by
the observer: Proba(correct announcement by Oα) > 1 − ε.

The liveness property is probabilistic because a probabilistic algorithm observed could never stabilized (with
probability 0).

In the safety property, ε is the margin of error of the announcement. For each margin of error ε allowed for the
announcement, there exists a value of the parameter α such that the probability for a false announcement is less
than ε. α is used to compute predetermined sequences of the observer. Intuitively the smaller ε is, the higher α is.

III. Impossibility Result with a Deterministic Observer
In15, the following result has been proven: for any problem pb in a synchronous and distinguished (presence of a

leader) network, we have: if there exists a self-stabilizing algorithm A solving pb, then there exists a self-stabilizing
algorithm B solving pb and which is observable in a deterministic way. In this section, we raise the following
question: does the result remain true if the network is anonymous? For this purpose, we present a synchronous and
anonymous problem which cannot be observed in a deterministic way. This problem is the computation of the size
of a synchronous, anonymous and one-way ring.

Theorem 3.1. Let A be a self-stabilizing algorithm computing the size of a synchronous, anonymous and one-way
ring. There is no deterministic observer for A.

Proof. The proof is by contradiction and uses a classical technique.
Let Obs be a deterministic observer of A. Let R be a ring and n be the size of R. We execute A and Obs on R.

Obs is located at an arbitrary process of the ring. Let P0 be this process. For the need of the proof, the processes of
R are named as follows: for all i in [0, n−1], Pi is the successor of P(i+1)mod n.

Let StatePi
be the local state of the process Pi ∈ R at the initial round (StatePi

includes all messages contained
in the input channel of Pi).

519

BEAUQUIER, PILARD, AND ROZOY

Let e be an execution of A and Obs on R, from the configuration: StateP0 , . . . , StatePn−1 . Let r be the round of
e where Obs announces the stabilization.

Now, let R′ be a ring and n′ be the size of R′ such that n′ ≥ r+1 and n′ �= n. We execute A and Obs on R′. Obs

is located at an arbitrary process of the ring. Let P ′
0 be this process. For the need of the proof, the processes of R are

named as follows: for all i in [0, n−1], P ′
i is the successor of P ′

(i+1) mod n.
Let e′ be an execution of A and Obs on R′, with this initialization:

∀i ∈ [0, n′−1] : StateP ′
i mod n

= StatePi
.

We say that Pi ∈ R is the associate of P ′
j ∈ R′ if and only if i = j mod n. For instance, P0 is the associate of P ′

0 and
P ′

2n, if it exists. If P is the associate of P ′, then P and P ′ have the same initialization in e and in e′.
If A is deterministic and since the ring is one-way then all actions executed by a process at a round depend only

on the local states of P and of its predecessor. Thus, the observer observes exactly the same actions in P0 and P ′
0

during the first r rounds of e and e′.
If A is probabilistic, then all actions executed by a process at a round also depend on probabilistic choices in

the execution e. In this case, we choose e′ such that all probabilistic choices in e are the same than in e′. Thus, the
observer sees exactly the same actions in P0 and P ′

0 during the first r rounds of e and e′.
Obs announces during the round r in e, so Obs announces during the round r in e′. But the size of R is different

from the size of R′, thus Obs makes a false announcement in e′. Therefore Obs is not an observer for A.

IV. Positive Result with a Probabilistic Observer
Let pb be the problem of computing the size of a synchronous, anonymous and one-way ring. We proved in

section III that if A is a self-stabilizing algorithm solving pb, then it cannot exist any deterministic observer for A.
We introduce in this section a self-stabilizing algorithm RS solving pb, which is observable in a probabilistic way.
In the first part, we describe this algorithm, then its probabilistic observer.

A. The Algorithm
In the sequel we note n the size of the ring.

1. Specification of the algorithm
The algorithm is probabilistic and verifies the following specification SP: (i) each process knows eventually the

size of the ring with probability 1, and (ii) from some point, a process that knows the size of the ring does not modify
this value with probability 1.

The variable sizeP of a process P contains the current ring size value estimated by P . The legitimate configurations
CL of RS are the configurations of RS in which: ∀P, sizeP = n. A maximal execution e of RS satisfies the
specification SP if and only if e has a suffix e′ containing only legitimate configurations. We note sizeP (last(e′)) the
value of sizeP at the configuration last(e′).

• (probabilistic convergence) the probability of the set of maximal executions of RS reaching a configuration
in CL is equal to 1. Formally, noting e an execution of RS that is not maximal,

lim|e|→+∞ Proba(∀P : sizeP (last(e)) = n) = 1

• (probabilistic correctness) the probability of the set of maximal executions of RS reaching a configuration in
CL and then from this legitimate configuration verifying SP is equal to 1. Formally, noting e an execution of
RS that is not maximal,

lim|e|→+∞ Proba(∀e′ a continuation of e, ∀P : sizeP (last(ee′)) = n) = 1

2. Basic idea of the algorithm
Each process will repetitively send tokens around the ring, each of them testing some value for the size. When a

process receives a token, the test value is either accepted or rejected by the process. Accepting a value means that

520

BEAUQUIER, PILARD, AND ROZOY

the process considers that this value can be the size of the ring. Rejecting a value means that the process considers
that this value cannot be the size of the ring. A rejected value, is not the size of the ring (except for values resulting
from a bad initialization of the system). An accepted value is possibly but not necessarily the size of the ring. But in
this case we will see there are much more acceptances that refusals. A process chooses a value for being the size of
the ring when the number of refusals and the number of acceptances are significantly different.

3. Description of the algorithm
The ring is anonymous, then all processes in the ring execute the same program. Processes communicate by token

passing.
When creating a token T , process P assigns a life time to T in lifeT . Then P saves this life time in lifeP . Now P

has to wait the end of this life time for creating another token. For that, the process has a counter cptP such that: at
the beginning of each round, cptP is incremented by 1 and, when the process creates a new token, cptP is reset to 0.
Thus, when cptP ≥ lifeP , the life time of the last token created by P is over. Furthermore, every time P creates a
token, the assigned life time of the token is incremented by 1. Thus, as soon as cptP ≥ lifeP , a new token is created
with a new life time (incremented by 1).

A process also assigns to each created token T a counter cptT which is initialized to 1. Moreover, at each round,
if T is transmitted, then the counter is incremented by 1, otherwise T is destroyed. A process relays all tokens which
have not exhausted their life time (cptT < lifeT). Thus, eventually all token disappears and eventually two distinct
tokens created by P are not be in the ring during the same round.

Finally, a process assigns to a token a color. The process randomly chooses the color between black and white
(equiprobability) and stores this color in colorP .
In summary, the variables of a process are:

1. colorP ∈ {black, white}: the color of the last token created by P ;
2. cptP ∈ N

∗: the number of rounds since P has created its last token. At a round, if P creates a token, then
cptP is reset to 0, elsewhere cptP is incremented by 1;

3. lifeP ∈ N
∗: the life time of the last token created by P . When P creates a token, lifeP is incremented by 1;

4. sizeP ∈ N
∗: the size of the ring computed by P . sizeP is the output variable of the algorithm.

The variables of a token Token(colorT , cptT , lifeT) are:
1. colorT ∈ {black, white}: the color of the token (constant during the life of T);
2. cptT ∈ N

∗: the number of processes visited by the token. cptT is initialized to 1, then is incremented by 1 at
each round (this variable also counts the number of rounds since T has been created);

3. lifeT ∈ N
∗: the life time of the token (constant during the life of T).

Computation of the size of the ring. Between two token creations, a process analyses all tokens that it receives.
Each token received by P is either recognized or not. A token is recognized by P if and only if colorP = colorT

and cptP = cptT . “P recognizes a token T ” means that T is possibly the last token created by P . Note that if P

recognizes T and T does not result from a bad initialization of the system, then the last token created by P has the
same color as T (colorP = colorT) and has been created the same round as T (cptP = cptT). Note that T is not
necessarily the last token created by P . On the other hand, if P does not recognize T and T does not result from a
bad initialization of the system, then: if colorP �= colorT then the last token created by P has not the same color as
T and then T is not the last token created by P and, in the same way, if cptP �= cptT then the last token created by
P has not been created the same round as T and then T is not the last token created by P .

In order to compute the size of the ring, a process P has two arrays: SP [] and FP [] in which P counts respectively
the number of recognized and not recognized tokens among those received. More precisely, if P receives and
recognizes a token T such that cptT = i, then P marks a success in i, i.e. P executes the action SP [i] := SP [i] + 1.
Otherwise, if P receives but does not recognize a token T such that cptT = i, then P marks a failure in i, i.e. P

executes the action FP [i] := FP [i] + 1.
Then, a process looks at the ratio RP [i] = SP [i]/(SP [i] + FP [i]). It will be proved that RP [i] is (in probability)

around 1/2 or less than 1/2 if i is not a multiple of the size, and that RP [i] is quickly closed to 1 when i is a multiple

521

BEAUQUIER, PILARD, AND ROZOY

of the size. Thus, a process P computes the size of the ring in sizeP :

sizeP := inf

{
i > 0 : SP [i]

SP [i] + FP [i] ≥ 0.9

}

Figure 1 contains the text of the algorithm executed by processes. Each round a process executes the procedure
Compute-Size().

4. Informal explanation of the algorithm
Example 1. Figure 2 shows an example of execution. Let r be a round and P be a process creating a token T at
round r . Let us suppose that the value of lifeP is 11 at round r − 1 and that P chooses black for T . Thus, at round r ,
P initializes its variables: colorP := •; cptP := 0; lifeP := 12 and P creates T (•, 1, 12). According to the algorithm
RS, T is transmitted if and only if cptT < lifeT . Thus T circulates around the ring until round r + 12.

At round r + 5, P receives T with cptT = cptP = 5 and colorT = colorP = •. Thus, at round r + 5, P marks a
success in 5. At round r + 10, P receives T for the second time with cptT = cptP = 10 and colorT = colorP = •.
Thus, at round r + 10, P marks a success in 10.

At round r + 12, Q2 receives T with cptT = lifeT . Thus Q2 does not transmit T . T disappears from the ring.
During all the token circulation, lifeP and lifeT remains constant, thus during all the token circulation, lifeP = lifeT .
Thus, when T disappears, P knows that fact and then, if P does not receive any token during the round, creates a
new token.

We call real-token a token created by the execution of the function Create-Token() and false-token a token resulting
from a bad initialization.

We note SP [i](r), the value of the variable SP [i] at round r . We note SP [i], the value of the variable SP [i] at the
current round. We use the same notation for all variables.
In the sequel k denotes a strictly positive integer.

Fig. 1 The algorithm.

522

BEAUQUIER, PILARD, AND ROZOY

Q4

Q3

Q1

Q2

P = (, 0, 12) P = (, 1, 12) P = (, 2, 12)

P = (, 0, 13)
113

12

round r+12

12

The token will not be transmitted.
P creates another token.

P marks a success
in 10

round r+10 round r+11
P marks a success

in 5

round r+5

P = (, 5, 12)

...

512

P = (, 11, 12)P = (, 10, 12)

... 11

1012

12

P
1

112

12

12
2round r round r+1 round r+2

P creates a token

Fig. 2 Behaviours of successes and failures for multiples of the size (⊕ represents the white color).

Ratio for multiples of the size. If n is the size of the ring and if a process P receives a real-token T with cptT = n,
then T has performed one complete circulation around the ring. Thus T has been created by P , colorP = colorT and
cptP = cptT when P receives T (for the first time). Then P recognizes T . In the same way, if a process P receives a
real-token T with cptT = kn, then T has performed k complete circulations around the ring. Thus T has been created
by P , colorP = colorT and cptP = cptT when P receives T (for the kth time). P recognizes T .

Thus, if a process P receives a token T such that cptT = kn, then:
(i) either T is a real-token, then T has been created by P , colorP = colorT and cptP = cptT , and then P marks

a success in cptT ;
(ii) or T comes from a bad initialization of the system; T is a false-token. Note there are at most n false-tokens,

because the capacity of a channel is 1. Moreover, cptT is incremented by 1 at each round. Thus for each
token T and for all j ≥ 1, cptT = j is true during at most one round in an execution. Therefore P marks
something in j at most one time for each false-token and so P marks in kn at most n times during an
execution. Thus, P marks at most n failures in kn during an execution.

It will be proved that P creates an infinite number of tokens. Each of them are recognized by P when they return
to P after some complete turns of the ring. Thus, P marks an infinite number of successes in kn. Furthermore, we
have seen that P marks at most n failures in kn. Thus, for all process P we have:

lim
r→+∞

(
SP [kn](r)

SP [kn](r) + FP [kn](r)
)

= 1 ≥ 0.9

and n is the least “kn” that satisfies this relation.

Example 2. Figure 3 shows the same execution as in figure 2, but considers the behavior of several processes. At
round r , P creates a token T .

523

BEAUQUIER, PILARD, AND ROZOY

?
Q4

Q3

1Q
Q2

?(, 0, 7) ?(, 7, 20)

?(, 1, 5)

?(, 2, 9) ?(, 2, 5)

?(, 1, 7) ?(, 8, 20)

?(, 3, 9)

(, 0, 12) (, 1, 12)

P

P and Q3 create a token Q1 marks a failure in 1
round r round r+1

1

1
7

12 1

12

?

?

?

??

?(, 4, 9) ?(, 5, 9)

?(, 3, 7)

Q2 marks a failure in 2 Q3 marks in 3
round r+2 round r+3

...
(, 4, 5)

(, 10, 20)(, 2, 7)
(, 9, 20)

(, 3, 5)

2
12

12 3

(, 2, 12) (, 3, 12)

Fig. 3 Behaviours of successes and failures for not multiples of the size (©? represents black or white).

Suppose that Q3 creates a token T ′ at round r , with lifeT ′ = 7. Suppose that Q1, Q2 and Q4 do not create any
token at round r . At round r , we have: Q1 = (©? , 1, 5), Q2 = (©? , 7, 20), Q3 = (©? , 0, 7) and Q4 = (©? , 2, 9).
We will see that Q1, Q2 and Q4 mark failures when they receive T , but not necessarily Q3.

For a sake of clarity, starting from round r + 1, figure 3 only shows the token T created by P .
At round r + 1, process Q1 receives T with cptT �= cptQ1

Thus whatever the color of Q1 is, Q1 marks a failure
in 1. Note that cptT �= cptQ1

is due to the fact that P and Q1 have not created their last token at the same round.
In the same way, at round r + 2, process Q2 receives T with cptT �= cptQ2

. Thus whatever the color of Q2 is, Q2

marks a failure in 2. At round r + 3, process Q3 receives T with cptT = cptQ3
. This equality is due to the fact that

P and Q3 have created their last token at the same round. Now, the color of Q3 determines if Q3 marks a success or
a failure when it receives T . If colorQ3 = •, then Q3 marks a success in 3, else a failure. Note that, when Q3 created
its last token, there was a probability 1/2 for Q3 to choose the same color as P , i.e. black. Thus, when Q3 receives
T , there is a probability 1/2 for Q3 to mark a success and the same probability to mark a failure.

Ratio for not multiples of the size. If n is the size of the ring and if a process P receives a real-token T with
cptT �= kn, then T has not performed an entire number of turns around the ring. Then T has not been created by
P . Let Q �= P be the creator of T . When P receives T : either colorP �= colorT and thus P does not recognize
T , or colorP = colorT and thus P recognizes T if and only if cptT = cptP . As P and Q have chosen their colors
independently, the probability of having colorP = colorT is equal to 1/2. Thus, when P receives a token T such that
cptT is not a multiple of n, the idea is that:

Proba(P marks a success in cptT) ≤ 1/2 ≤ Proba(P marks a failure in cptT)

Thus, for all process P and ∀i ∈ N
∗ such that i is not a multiple of n, the ratio SP [i]/SP [i] + FP [i] is smaller

than 1/2, thus we have:

Proba

(
SP [i](r)

SP [i](r) + FP [i](r) ≥ 0.9

)
r→+∞−−−−→ 0

Conclusion. Let us recall that a process P computes the size of the ring in its variable sizeP :

sizeP := inf

{
i > 0 : SP [i]

SP [i] + FP [i] ≥ 0.9

}

524

BEAUQUIER, PILARD, AND ROZOY

Then the ratio allows us to distinguish between the multiples of the size and the other values. Indeed, only multiples
of the size have a ratio value greater than or equal to 0.9. On the other hand, the inf allows us to choose the smallest
multiple which is the right size.

5. Remark
The algorithm RS uses an infinite state space. This feature is inherent to any observable self-stabilizing algorithm

computing the size of an anonymous ring. Consider for instance the classical token circulation algorithm of Herman19

(the network must be odd size). One could think that after stabilization (and only a finite memory is used for that)
the computation of the size is easy, since it suffices for a process to count the last visit time of a token. But after
stabilization, this time is only approximately 2n (which is the expected service of time) but not exactly 2n. Then in
order to compute the size, a process has to memorize (using an infinite state space) the different counted time and
analyses their frequencies, in the same way as we do in algorithm RS.

B. Proof of the Algorithm
In the proof, we use the following notation: RP [i] = SP [i]/SP [i] + FP [i]

1. Progression of each process
We will first prove that each process creates indefinitely tokens with increasing life time. Recall that cptP is the

number of rounds since P has created its last token and that lifeP is the life time that P gave to its last token.

Lemma 4.1. Let P be a process. For each round r and for each l ≥ 1: if lifeP (r) = l, then ∃ r ′ > r such that
lifeP (r ′) = l + 1.

The idea of the proof is to remark that a process ceases to create new tokens only if it is prevented to do that by
another process, i.e. it receives a new token at each round. We prove that this situation never appears.

Proof. The proof is by contradiction.
Note that all tokens have a bounded life time, thus eventually all false-tokens disappear. Let r0 be the first round

in which the ring no longer contains any false-token. Let l be an integer and let r be a round such that lifeP (r) = l.
If r < r0 then lifeP (r) ≤ lifeP (r0).

• If lifeP (r) < lifeP (r0) then we are done with r ′ the first round such as lifeP (r ′) = 1 + l ≤ lifeP (r0).
• If lifeP (r) = lifeP (r0) then let us start again with r = r0

Thus we can suppose that r ≥ r0.
If P never created any token from the round r0, P has necessarily received a token at each round after round r0.

Since all tokens eventually disappear, there exists at least one process in the ring which creates an infinite number of
tokens. Let P∞ be the set of processes which create an infinite number of tokens and let P �∞ be the set of processes
which create a finite number of tokens. We have: 1 ≤ |P∞| ≤ n − 1 and 1 ≤ |P �∞| ≤ n − 1.

Let r1 ≥ r0 be the first round in which (i) the ring does not contain any token created by a process in P∞ and (ii)
processes in P�∞ no longer create token.

If Q ∈ P∞, Q creates an infinite number of tokens, thus we have:

∀l, ∃rQ ≥ r1, ∀r ≥ rQ : lifeQ(r) > l

=⇒ ∃rQ ≥ r1, ∀r ≥ rQ : lifeQ(r) > nn + 1 with l = nn + 1

=⇒ ∃r ≥ r1, ∀r ′ ≥ r, ∀Q ∈ P∞ : lifeQ(r′) > nn + 1 with r = max{rQ : Q ∈ P∞}
Let r2 ≥ r1 be a round such as: ∀r ≥ r2, ∀Q ∈ P∞ : lifeQ(r) > nn + 1

Between rounds r2 and r2 + nn, we have: ∀P ∈ P �∞, no token of P circulates in the ring, and ∀Q ∈ P∞, Q has
created at most one token.

But |P∞| ≤ n − 1.
Thus, between rounds r2 and r2 + nn, there exists a sequence of n rounds in which no token is created and at most

n − 1 tokens circulate in the ring.

525

BEAUQUIER, PILARD, AND ROZOY

Therefore, during this sequence of n rounds, there exists at least one round during which P does not receive any
token, and then, during this round, P creates a token. Contradiction.

Corollary 4.1. ∀P a process:
1. ∀l ∈ N

∗, P creates an infinite number of tokens T such that lifeT ≥ l;
2. ∀l ∈ N

∗, P receives an infinite number of tokens T such that cptT = l.

Proof.
Point 1 is clear as, by lemma 4.1, lifeP indefinitely increases, which means that P creates token T of lifeT =
l + 1, l + 2, l + 3, . . .

Point 2: As a token T is transmitted as long as the variable cptT has not reached the value lifeT , a token sent by process
P ′ is received by process P at distance d from P ′ with cptT = d, d + n, d + 2n, d + 3n, . . . until it reached lifeT .
Thus, for a given l, if l = d + kn, P receives token with cptT = l sent by P ′ for lifeT = l, l + 1, l + 2, l + 3, . . .

As P ′ indefinitely increases lifeT , P indefinitely receives token with cptT = l.

2. Ratio for multiples of the size

Proposition 4.1. ∀i ∈ N
∗ such that i is a multiple of n, we have:

lim
r→+∞ RP [i](r) = 1

Proof. Let i = kn, with k ∈ N
∗.

If P receives a token T such that cptT = i, then either (i) T is a false-token (resulting from a bad initialization),
then P can mark a failure in i, or (ii) T is a real-token, then P is the creator of T and P marks a success in i.

(i) As the ring contains at most n false-tokens, P marks at most n failures in i.
(ii) Lemma 4.1 involves that each process sends an infinite number of tokens with an increasingly large value

of life time. Thus, P marks an infinite number of successes in i.
Thus: ∀i = kn, lim r→+∞ RP [i](r) = 1

3. Ratio for not-multiples of the size

Lemma 4.2. ∀i ∈ N
∗ such as i is not a multiple of n, we have: when P receives a real-token T such as cptT = i:

Proba(P marks a success in i) ≤ Proba(P marks a failure in i).

Proof. Let i ∈ N
∗ be not multiple of n.

If P receives a real-token T with cptT = i, and as i is not a multiple of n, then T has been created by another
process, say Q, thus:

Proba(colorP = colorT) = Proba(P and Q independently choose the same color)

= 1/4 + 1/4 = 1/2

Consequently:

Proba(P marks a success in i) = Proba(colorP = colorT ∧ cptP = cptT)

≤ Proba(colorP = colorT) = 1/2

And so, we have:

Proba(P marks a success in i) ≤ 1/2 ≤ Proba(P marks a failure in i)

Proposition 4.2. ∀i ∈ N
∗ such as i is not a multiple of n, we have:

lim
r→+∞ Proba (RP [i](r) ≥ 0.9) = 0

526

BEAUQUIER, PILARD, AND ROZOY

0

1/2

1 1

1/2

0

Fig. 4 Variance.

Proof outline.

According to lemma 4.2, if i is not a multiple of n,then the probability for P to mark a failure in i is greater
than the probability for P to mark a success in i. Thus the average value of RP [i](r) is smaller than or equal to
0.5. But the average value is not sufficient to conclude. Indeed, the average value of the two functions drawn in the
figure 4 is 0.5, but the variance value of the first function is 0 while the variance value of the second function is +∞.
Intuitively, if the ratio is of the form of the first function then the theorem is true, else the theorem is false. Note
that, if RP [i](r) = 1/2 = 0.5, then P has marked one success among two marks, and only 8 consecutive successes
are enough to set RP [i](r) above 0.9. But, if RP [i](r) = 500/1000 = 0.5, then P has marked 500 successes among
1000 marks, and 4000 consecutive successes must be marked by P in order to increase RP [i](r) above 0.9. Thus,
when time passes, it is more and more difficult to have RP [i](r) greater than 0.9.

Using a technique similar to the proof of Bienaymé-Tchebycheff inequality, we prove that Proba(RP [i](r) ≥
0.9) ≤ 1/8 · (0, 4)3 · N2. It is the lemma A.1 given in appendix. This result is more strong that needed for the
proposition 4.2, but it will be useful for proposition 4.3 too. The detailed proof of proposition 4.2 is given in
appendix: proposition A.1.

The above proposition (4.2) will be used in order to prove the convergence of the algorithm. For the correctness,
we need the following proposition (4.3).

Proposition 4.3. ∀i ∈ N
∗ such as i is not a multiple of n, we have:

lim
r→+∞ Proba(∀r ′ ≥ r : RP [i](r ′) ≥ 0.9) = 0

The proof uses a similar argument as for proposition 4.2 and is based on the fact that (
∑∞ 1/N2) ∼ 1/N : that’s

the reason it was needed, in lemma A.1, to obtain a majoring in 1/N2 and not 1/N . The detailed proof is given in
appendix: proposition A.2.

4. Conclusion

Theorem 4.1 (Probabilistic convergence). We note e an execution of RS that is not maximal.

lim|e|→+∞ Proba(∀P : sizeP (last(e)) = n) = 1;

This theorem results from propositions 4.1 and 4.2. We compute a finite multiplication of probabilities to obtain
this result. The detailed proof is given in appendix: theorem A.1.

Theorem 4.2 (Probabilistic correctness). We note e an execution of RS that is not maximal.

lim|e|→+∞ Proba(∀e′a continuation of e, ∀P : sizeP (last(ee′)) = n) = 1

This theorem results from propositions 4.1 and 4.3. We also compute a finite multiplication of probabilities to
obtain this result. The detailed proof is given in appendix: theorem A.2.

527

BEAUQUIER, PILARD, AND ROZOY

C. Complexity of the Algorithm
We have computed the time complexity of RS in the worst case: the stabilization time is in max{O(n3), O(M2)},

where M is n plus the maximal initial value of any variable of processes. The detailed computation of this complexity
is given in the appendix: section B

D. The Observer
In the sequel, we do not make the predefined sequences of the observer explicit (for the sake of simplicity) but

we rather describe in a informal way what the observer tries to match. The transcription of this informal observation
into formal sequences is given later.

1. Behaviour of the observer.
The observer has two arrays: SObs[] and FObs[]. ∀i ≥ 1, SObs[i] and FObs[i] are initialized to 0. If P is the

observed process, then the observer counts in these arrays the number of modifications that P executes in SP [] and
FP []. Let sP [i] and fP [i] be the initial values of SP [i] and FP [i] respectively. Note that the observer never takes
into account the values of sP [i] and fP [i].

Let n be the size of the ring. If a process P receives a false-token T such that cptT = n, then P can possibly mark
a failure in n, for instance if colorT �= colorP . But that can happen at most n times, because a ring of size n cannot
initially contain more than n false-tokens. On the other hand, if P receives a real-token T such that cptT = n, then
P is the creator of T , and marks a success in n. Thus: ∀r ≥ 0, FP [n](r) ≤ fP [n] + n.

Since the counter of a token is incremented by 1 at each round, all false-tokens which cause a failure in n will be
received during the first n rounds. Then, for each value i, the observer does not take into account the first i tokens
arriving at P . For that the observer uses a counter countObs . This counter is initialized to 0 and is incremented by 1
at each round.
Let P be the observed process. The observer executes:

(a) At each round, countObs := countObs + 1
(b) ∀i ≥ 1, P marks a success in i and countObs>i ⇒ SObs[i] := SObs[i] + 1
(c) ∀i ≥ 1, P marks a failure in i and countObs > i ⇒ FObs[i] := FObs[i] + 1

The observer announces the stabilization if and only if sizeP is such that:
1. FObs[sizeP] = 0 and
2. ∀i < sizeP : FObs[i] > 0 and
3. SObs[sizeP] ≥ sizeP + α, where α depends on ε.
Clearly, FObs[n] = 0 is always true. Thus, if sizeP > n, the second condition is never satisfied. Therefore, the

observer cannot announce if sizeP > n.
If sizeP < n, the probability for FObs[sizeP] to satisfy the first condition decreases as the number of sizeP tests

increases. The third condition forces the observer to wait for sizeP to be sufficiently tested before announcing.
This informal description of the observer can be transformed into formal sequences. If P is the observed process,

then these sequences are of the form: s = (a1, . . . , ak) such that:
• ai is an action of RS for each i ∈ [1, . . . , k];
• a1 is the first action executed from the launch of the observer;
• s contains at least v + α actions SP [v] := SP [v] + 1;
• s does not contain any action FP [v] := FP [v] + 1;
• s contains at least one action FP [j] := FP [j] + 1 for each j ∈ [1, . . . , v[;
• the last action of s is sizeP := v.

2. Proof of the observer

Theorem 4.3 (Safety). ∀ε ∈ [0, 1[, ∃α : Proba(false announcement by Obsα) ≤ ε

Proof. Let Prob = Proba(false announcement) ≤ ∑+∞
i=1 Proba(false announcement on i)

Let T be a false token. From round n + 1, if T circulates the ring, then cptT > n. Thus P never marks any failure
in n from round n + 1. Moreover, according to (a) and (c), the observer only counts the failures marked by P in n

528

BEAUQUIER, PILARD, AND ROZOY

from round n + 1. Therefore, FObs[n] = 0 is always true. Then if sizeP > n the second condition is never satisfied.
Therefore, the observer cannot announce if sizeP > n and we have:

if i > n, then Proba(false announcement on i) = 0
=⇒ Prob ≤ ∑n−1

i=1 Proba(false announcement on i)

If i < n then Proba(false announcement on i) ≤ Proba(FObs[i] = 0, with i having been tested at least i + α

times) ≤ (1/2)i+α (according to the lemma 4.2)
So, we have:

Prob ≤
n−1∑
i=1

(1/2)i+α = (1/2)α ∗
n−1∑
i=1

(1/2)i ≤ (1/2)α

By choosing α ≥ −logε/log2, we obtain: Proba(false announcement) ≤ ε

Theorem 4.4 (Liveness). The observer eventually announces the stabilization with probability 1.

Proof. Let us prove that: Proba(observer announces onn at the round r)
r→ +∞−−−−→1

First condition: FObs[n] = 0.
(1) FObs[n] = 0 is always true.
Second condition: ∀i < n : FObs[i] > 0
According to corollary 4.1, ∀i ∈ N

∗ : i < n, P receives an infinite number of tokens T such that cptT = i.
Moreover, according to lemma 4.2, if P receives a real-token T such that cptT < n, then the probability for P to
mark a success in cptT is less than the probability for P to mark a failure in cptT . Therefore:

(2) Proba(∀i < n : FObs[i](r) > 0)
r→+∞−−−−→ 1

Third condition: SObs[n] ≥ n + α

According to corollary 4.1, P creates at least 2n+α tokens with a life time ≥ n, thus: P marks at least 2n+α

successes in n and the observer marks at least n+α successes in n. Therefore:
(3) eventually, (SObs[n] ≥ n+α)

According to (1), (2) and (3), we have: Proba(observer announces on n)
r→+∞−−−−→ 1

Thus the observer eventually announces the stabilization with probability 1.

The liveness property of the observer is weakened because of probabilistic correctness of algorithm. Indeed, in
some executions stabilization is reached, then lost, then reached and so on. What is guaranteed is that the probabilistic
measure of such executions is 0. But what should announce an observer with a deterministic liveness condition?
Obviously, he could not announce that the algorithm is stabilized. He could not never announce either. Hence the
probability liveness condition.

V. Conclusion
In this paper, we introduce the notion of a local and probabilistic observer for self-stabilizing algorithms. Our

result is that, if the network is uniform and synchronous, then some problems having a self-stabilizing solution do
not have any self-stabilizing solution that can be observed by a local and deterministic observer, but have a self-
stabilizing solution that can be observed by a local and probabilistic observer. Computing the size of the ring is not
only a particular example, but the first step for extending the probabilistic observation to a larger class of problems.
The reason why is that, once the size is known for sure (in fact almost sure), it is easier to observe self-stabilizing
snapshots, leading to the observation of more complex stabilizations.

A. Proof of the Algorithm
We introduce here notations we used in order to perform the proof.
In the sequel, we note i a value such as : i ∈ N

∗ and i is not a multiple of n.
Let P be a process. Let gi,k be the Bernouilli variable, where k is the number of real-tokens T received by P

since the beginning of the execution and such that cptT = i:
gi,k = 0 if and only if P marks a failure when P receives T ;

529

BEAUQUIER, PILARD, AND ROZOY

gi,k = 1 if and only if P marks a success when P receives T ;
Let pi,k be the probability to have gi,k = 1. According to the lemma 4.2, pi,k ≤ 1/2.

Let MS[i] be the number of (false) successes marked by P in i at the reception of a false-token (cptT = i)
and let MF [i] be the number of (false) failures marked by P in i at the reception of a false-token (cptT = i). Let
M[i] = MS[i] + MF [i].

We claim that: M[i] ≤ n. Indeed, as the counter of a token is incremented by 1 each round then, for a given false-
token T and for a given value i, P received at most one time the token T with cptT = i. Furthermore, a synchronous
ring of size n can contains at most n false-tokens at the initialization. Then, for a given value i, P received at most
n false-tokens T with cptT = i. Thus, M[i] ≤ n.

Let sP [i] and fP [i] be the initial values of SP [i] and FP [i].
let r0 be the first round in which the ring no longer contains any false-token and r be a round such that r ≥ r0.
At the round r , if the value i has been tested N times, i.e. P has received N real-tokens T such that cptT = i since

the beginning of the execution, then:

SP [i](r) = sP [i] + MS[i] +
N∑

k=1

gi,k and FP [i](r) = fP [i] + MF [i] + N −
N∑

k=1

gi,k

Therefore, at the round r , if the value i has been tested N times, then:

SP [i](r)
SP [i](r) + FP [i](r) = sP [i] + MS[i] + ∑N

k=1 gi,k

sP [i] + fP [i] + M[i] + N

We note:

LP [i](N) = sP [i] + MS[i] + ∑N
k=1 gi,k

sP [i] + fP [i] + M[i] + N
and Q[i](N) =

∑N
k=1 gi,k

N

As M[i] is finite (and constant) and sP [i] and fP [i] are constants, the behaviours of LP [i](N) and Q[i](N) are the
same when N → +∞, so we analyse QN .

Lemma A.1. ∀i ∈ N
∗ such as i is not a multiple of n and ∀N ∈ N

∗ :

Proba(Q[i](N) ≥ 0.9) ≤ 1

(0.4)3 .8.N2

Proof. For more information about formulas of probabilities we have used in the proof, see for instance20.
In this proof, we note i a value such as : i ∈ N

∗ and i is not a multiple of n.
We note E(Q[i](N)), the average of Q[i](N).

E(Q[i](N)) = E

(∑N
k=1 gi,k

N

)
= 1

N

N∑
k=1

E(gi,k) = 1

N

N∑
k=1

pi,k ≤ 1

N

N

2
= 1

2

In the sequel, we use a technique similar of the proof of the inequality of Bienaymé-Tchebycheff, but with a moment
of order 3.

Proba(Q[i](N) ≥ 0.9) = Proba(Q[i](N) − 1/2 ≥ 0.4)

≤ Proba (|Q[i](N) − 1/2| ≥ 0.4)

= Proba
(|Q[i](N) − 1/2|3 ≥ (0.4)3

)
Let f = |Q[i](N) − 1/2|3; f takes its value in a set I .

Let A = {x ∈ I : (f = x) ∧ (f ≥ (0.4)3)}, B = {
x ∈ I : (f = x) ∧ (

f < (0.4)3
)}

and px be the probability to
have f = x.

530

BEAUQUIER, PILARD, AND ROZOY

By definition, we have:

E(f) =
∑
x∈I

x · px =
∑
x∈A

x · px +
∑
x∈B

x · px

Thus,

E(f) ≥
∑
x∈A

x · px since all values are positive

≥ (0.4)3
∑
x∈A

px since x ∈ A =⇒ x ≥ (0.4)3

≥ (0.4)3 · Proba(f ≥ (0.4)3) since
∑
x∈A

px = Proba(f ≥ (0.4)3) by definition

Thus, we obtain:

Proba(Q[i](N) ≥ 0.9) ≤ Proba(f ≥ (0.4)3) ≤ E(f)/(0.4)3 = E(|Q[i](N) − 1/2|3)/(0.4)3

E

(∣∣∣∣Q[i](N) − 1

2

∣∣∣∣
3
)

= E




∣∣∣∣∣ 1

N

N∑
k=1

gi,k − 1

2

∣∣∣∣∣
3

 = E


 1

N3

∣∣∣∣∣
N∑

k=1

gi,k − N

2

∣∣∣∣∣
3



= 1

N3
E




∣∣∣∣∣
N∑

k=1

(
gi,k − 1

2

)∣∣∣∣∣
3

 using the linearity of the average

≤ 1

N3
E

(
N∑

k=1

∣∣∣∣gi,k − 1

2

∣∣∣∣
3
)

applying the triangular inequality to the cube of the
sum and the fact that the average is a growing function;

≤ 1

N3

N∑
k=1

(
E

∣∣∣∣gi,k − 1

2

∣∣∣∣
3
)

using the linearity of the average

= 1

N3

N∑
k=1

1

8
= 1

8N2

as 1/8 is the moment of order 3 of a Bernouilli
variable of parameter 1/2

Therefore,

Proba(Q[i](N) ≥ 0.9) ≤ 1

(0.4)3 · 8 · N2

Proposition A.1. ∀i ∈ N
∗ such as i is not a multiple of n, we have:

lim
r→+∞ Proba (RP [i](r) ≥ 0.9) = 0

Proof. In this proof, we note i a value such as : i ∈ N
∗ and i is not a multiple of n.

Let P be a process receiving a token T = Token(colorT , cptT , lifeT) with cptT = i.

531

BEAUQUIER, PILARD, AND ROZOY

According to lemma A.1, we have:

Proba(Q[i](N) ≥ 0.9) ≤ 1

(0.4)3.8.N2

1

(0.4)3.8.N2

N→+∞−−−−→0 =⇒ Proba(Q[i](N) ≥ 0.9)
N→+∞−−−−→0

=⇒ Proba(LP [i](N) ≥ 0.9)
N→+∞−−−−→0

According to corollary 4.1, the number of tokens received by P increases indefinitely with the round, thus N goes
to infinity with r and we can conclude:

Proba

(
SP [i](r)

SP [i](r) + FP [i](r) ≥ 0.9

)
r→+∞−−−−→0

Proposition A.2. ∀i ∈ N
∗ such as i is not a multiple of n, we have:

lim
r→+∞ Proba(∀r ′ ≥ r: RP [i](r ′) ≥ 0.9) = 0

Proof. In this proof, we note i a value such as : i ∈ N
∗ and i is not a multiple of n.

Let P be a process receiving a token T = Token(colorT , cptT , lifeT) with cptT = i.
According to lemma A.1, we have:

Proba (Q[i](N) ≥ 0.9) ≤ 1

(0.4)3.8.N2

Proba(∀M ≥ N : Q[i](M) ≥ 0.9) ≤
+∞∑

M=N

Proba(Q[i](M) ≥ 0.9)

≤ 1

(0.4)3.8

+∞∑
M=N

1

M2
∼ 1

(0.4)3.8.N

N→+∞−−−−→0

Proba(∀M ≥ N : Q[i](M) ≥ 0.9)
N→+∞−−−−→0 =⇒ Proba(∀M ≥ N : LP [i](M) ≥ 0.9)

N→+∞−−−−→0

Again according to corollary 4.1, we have N and r goes to infinity together.

=⇒ Proba

(
∀r ′ ≥ r: SP [i](r ′)

SP [i](r ′) + FP [i](r ′)
≥ 0.9

)
r→+∞−−−−→0

Theorem A.1 (Probabilistic convergence). We note e an execution of RS that is not maximal.

lim|e|→+∞ Proba(∀P : sizeP (last(e)) = n) = 1;

Proof. We note P1, . . . , Pn, processes of the ring.

532

BEAUQUIER, PILARD, AND ROZOY

The size of the ring is therefore equal to n and a process P will choose this value as soon as RP [n] ≥ 0.9 and
RP [i] < 0.9 for all i less than n. Thus:

Proba(∀ process P : sizeP (r) = n)

= Proba(∀k ∈ [1, n]: (∀i ∈ [1, n − 1] : RPk
[i](r) < 0.9) and (RPk

[n](r) ≥ 0.9))

≤
(n∏

k=1

Proba(∀i ∈ [1, n − 1]: RPk
[i](r) < 0.9)

)
∗

(n∏
k=1

Proba(RPk
[n](r) ≥ 0.9)

)

Let P be a process of the ring. According to proposition 4.2, we have:

∀i ∈ [1, n − 1]: ∀ε > 0, ∃R, ∀r > R::Proba(RP [i](r) < 0.9) > 1 − ε

Thus the result follows as finite product of limit. More precisely:

∀εi > 0 (i ∈ [1, n − 1]), ∃R = max

(
n−1⋃
i=1

{Ri}
)

, ∀r > R :
n−1∏
i=1

Proba(RP [i](r) < 0.9) >

n−1∏
i=1

(1 − εi)

Moreover:

∀ε > 0, ∃ε1 > 0, . . . , ∃εn−1 > 0 :
n−1∏
i=1

(1 − εi) > 1 − ε

=⇒ (i) ∀εk > 0, ∃Rk, ∀r > Rk:
n−1∏
i=1

Proba(RPk
[i](r) < 0.9) > 1 − εk

⇐⇒ Proba(∀i ∈ [1, n − 1] : RPk
[i](r) < 0.9)

r→+∞−−−−→1

According to proposition 4.1, we have:

(ii) ∀ε′
k > 0, ∃R′

k, ∀r > R′
k: Proba(RPk

[n](r) ≥ 0.9) > 1 − ε′
k

According to (i) and (ii), we have:

∀εk > 0 (k ∈ [1, n]), ∀ε′
k > 0(k ∈ [1, n]), ∃R = max(∪n

k=1{Rk, R
′
k}), ∀r > R:(

n∏
k=1

Proba(∀i ∈ [1, n − 1]: RPk
[i](r) < 0.9)

)
∗

(
n∏

k=1

Proba(RPk
[n](r) ≥ 0.9)

)

>

(
n∏

k=1

(1 − εk)

)
∗

(
n∏

k=1

(1 − ε′
k)

)

Moreover:

∀ε > 0, ∃ε1 > 0, . . . , ∃εn > 0, ∃ε′
1 > 0, . . . , ∃ε′

n > 0:
n∏

k=1

(1 − εk) ∗
n∏

k=1

(1 − εk) > 1 − ε

=⇒ ∀ε > 0, ∃R, ∀r > R : Proba(∀ processP : sizeP (r) = n) > 1 − ε

⇐⇒ Proba(∀ process P : sizeP (r) = n)
r→ +∞−−−−→1

if e is an execution of RS that is not maximal and if last(e) is the configuration reached at the round r , then r goes
to infinity with |e| and we can conclude:

lim|e|→+∞ Proba(∀P : sizeP (last(e)) = n) = 1

533

BEAUQUIER, PILARD, AND ROZOY

Theorem A.2 (Probabilistic correctness). We note e an execution of RS that is not maximal.

lim|e|→+∞ Proba(∀e′ a continuation of e, ∀P : sizeP (last(ee′)) = n) = 1

Proof. We note P1, . . . , Pn, processes of the ring.

Proba(∀r ′ ≥ r, ∀ process P : sizeP (r ′) = n) = Proba(∀k ∈ [1, n]: (∀i ∈ [1, n − 1], ∀r ′ ≥ r: RPk
[i](r ′) < 0.9) and

(∀r ′ ≥ r: RPk
[n](r ′) ≥ 0.9))

=
(

n∏
k=1

Proba(∀i ∈ [1, n − 1], ∀r ′ ≥ r : RPk
[i](r ′) < 0.9)

)

∗
(

n∏
k=1

Proba(∀r ′ ≥ r: RPk
[n](r ′) ≥ 0.9)

)

Let P be a process of the ring. According to proposition 4.3, we have:

∀i ∈ [1, n − 1] : ∀ε > 0, ∃R, ∀r > R ::Proba(∀r ′ ≥ r : RP [i](r ′) < 0.9) > 1 − ε

=⇒ ∀εi > 0 (i ∈ [1, n − 1]), ∃R = max(∪n−1
i=1 {Ri}), ∀r > R :

n−1∏
i=1

Proba
(∀r ′ ≥ r: RP [i](r ′) < 0.9

)
>

n−1∏
i=1

(1 − εi)

Moreover:

∀ε > 0, ∃ε1 > 0, . . . , ∃εn−1 > 0 :
n−1∏
i=1

(1 − εi) > 1 − ε

=⇒ (i) ∀εk > 0, ∃Rk, ∀r > Rk:
n−1∏
i=1

Proba(∀r ′ ≥ r:RPk
[i](r ′) < 0.9) > 1 − εk

⇐⇒ Proba(∀i ∈ [1, n − 1], ∀r ′ ≥ r: RPk
[i](r ′) < 0.9)

r→+∞−−−−→1

According to proposition 4.1, we have:

(ii) ∀ε′
k > 0, ∃R′

k, ∀r > R′
k: Proba(∀r ′ ≥ r: RPk

[n](r ′) ≥ 0.9) > 1 − ε′
k

According to (i) and (ii), we have:

∀εk > 0(k ∈ [1, n]), ∀ε′
k > 0(k ∈ [1, n]), ∃R = max(∪n

k=1{Rk, R
′
k}), ∀r > R :(

n∏
k=1

Proba(∀i ∈ [1, n − 1], ∀r ′ ≥ r: RPk
[i](r ′) < 0.9)

)
∗

(
n∏

k=1

Proba(∀r ′ ≥ r: RPk
[n](r ′) ≥ 0.9)

)

>

(
n∏

k=1

(1 − εk)

)
∗

(
n∏

k=1

(1 − ε′
k)

)

534

BEAUQUIER, PILARD, AND ROZOY

Moreover:

∀ε > 0, ∃ε1 > 0, . . . , ∃εn > 0, ∃ε′
1 > 0, . . . , ∃ε′

n > 0:
n∏

k=1

(1 − εk) ∗
n∏

k=1

(1 − ε′
k) > 1 − ε

=⇒ ∀ε > 0, ∃R, ∀r > R: Proba(∀r ′ ≥ r, ∀ processP : sizeP (r ′) = n) > 1 − ε

⇐⇒ Proba(∀r ′ ≥ r, ∀ processP : sizeP (r ′) = n)
r→+∞−−−−→1

If e is an execution of RS that is not maximal and if last(e) is the configuration reached at the round r , then r goes
to infinity with |e| and we can conclude:

lim|e|→+∞ Proba(∀e′ a continuation of e, ∀P : sizeP (last(ee′)) = n) = 1

B. Complexity of the Algorithm
In this section, we compute the time complexity of RS in the worst case. In order to compute this complexity,

we need in a first time, to evaluate the time between two receptions and between two creations of a token.

Creation:
If ∀P , lifeP ≥ n then ∀P , P receives successive tokens from a given process Q with at least n rounds between

these two receptions. Thus, in an interval of n rounds, P receives at least n−1 tokens from other processes. Then,
as soon as the life of its last created token expires (i.e. it disappears from the ring), P must wait at most n rounds
before creating another token. Consequently, in “persistent phase” P creates a token every “n + lifeP ” rounds.

If ∃P ,lifeP < n then, in an interval of at most n rounds, at least one process “progresses”, i.e. creates a token
increasing its life by 1: in less than n rounds, the token of P disappears ; it is then in process Q and so Q is “free”
at this round, i.e. it has no token to forward ; if cptQ ≥ lifeQ then Q creates a token and progresses ; else it does not
send anything and the successor of Qis free at the next round, thus the creation is made at the latest by P (after n

rounds) by induction on the distance between Q and P .
Consequently, after about O(n3) rounds in the worst case, we have: ∀P, lifeP ≥ n.
P is stabilized if at least the following property holds: n = inf{i : RP [i] ≥ 0.9} and still holds forever. We are

going to compute the time needed to reach the situation where the property holds (time needed to “forever” verify
the property is of the same order).

Time needed to have ∀P, RP [n] ≥ 0.9:
A process can mark at most n failures in n during the first n rounds of an execution, and then it only marks

successes in n.
RP [n] ≥ 0.9 ⇔ SP [n] ≥ 0.9 (SP [n] + FP [n]) ⇔ SP [n] ≥ 9 FP [n] which is verified if SP [n] ≥ 9M , where M is

n plus the maximal initial value of any variable of processes.
After about O(n3) rounds in the worst case, lifeP ≥ n. Let us assume that P progresses then from A to A + h,

where A is the maximum between n (if lifeP is initially lesser than n) and M (else). Since we study the worst case,
and since M is greater that n, we assume that A = M . For each lifeP = k between M and M + h, the time D1 needed
for this progression is the life plus at most n rounds, then:

D1 =
k=M+h∑

k=M

(k + n) = 1

2
(h + 1)(2M + h) + n(h + 1)

A process marks exactly one success in n for every token it creates with a life greater than or equal to n. Thus, P

marks h successes in n during its progression between M and M + h. But h must be greater that 9M , thus the order
of h is O(M) and then the order of D1 is O(M2).

Consequently, the time needed to have ∀P, RP [n] ≥ 0.9 is a O(n3) + O(M2).

535

BEAUQUIER, PILARD, AND ROZOY

Time needed to have ∀P, ∀i < n, RP [i] < 0.9:
P marks a success or a failure in i < n only if it receives a token. This token necessarily comes from process Pi

at distance i. After about O(n3) rounds in the worst case, processes are in the “persistent phase”. Thus Pi waits at
most n rounds before creating a token since its last token has disappeared, and then P receives and marks in i once
every ‘n + lifePi

” rounds, for all i.
Let us consider SP [i]/SP [i] + FP [i] < 0.9 ⇔ SP [i] < 9 FP [i] with Proba(P marks a success in i) =

Proba(P marks a failure in i) = 1/2
In a first time, we consider that variables SP [i] and FP [i] are initialized to 0, ∀i. In this case, we say that “there is

stabilization in x rounds at i”, if SP [i]/SP [i] + FP [i] < 0.9 after x rounds but not before. We obtain the following
probabilities for the stabilization in x rounds at i:

x 1 2 3 . . . 9 10 11 12 . . .

Proba 1/2 (1/2)2 (1/2)3 . . . (1/2)9 0 (1/2)11 (1/2)12 ∗ 2 . . .

Then the average number of rounds before stabilization is E(stabi) ≤ ∑+∞
k=1 k(1/2)k = 2

If we change the definition of “there is stabilization in x rounds at i” by RP [i] < 0.9 after x rounds but not before,
and during 2 rounds, or during 3 rounds, . . . , then E(stabi) is a little bit greater but still bounded.

Now, we consider that variables SP [i] and FP [i] may not be initialized to 0, ∀i. In the worst case, we
have M bad successes in i due to the initialization of SP [i] and to the n false tokens. Thus, we must have:
SP [i] + M/SP [i] + FP [i] + M < 0.9 ⇔ SP [i]+M < 9 FP [i]. We obtain then an average number of rounds before
stabilization in at most O(2 + M).

Consequently, P must arrive in the “persistent phase” (in O(n3) rounds), then marks M + 2 times in i which is
done in O(M2) rounds. Thus the time needed to have ∀P, ∀i < n, RP [i] < 0.9 is in O(n3) + O(M2).

Acknowledgments
We would like to thank anonymous referees for their valuable comments that helped to improve this paper.

Conclusion:
The stabilization time of RS is in max{O(n3), O(M2)}, where M is n plus the maximal initial value of any

variable of processes.

References
1Dijkstra, E. W., “Self-stabilizing Systems in Spite of Distributed Control,” Communications of the ACM, Vol. 17, No. 11,

Nov. 1974, pp. 643–644.
2Dolev, S., Self-Stabilization, MIT Press, Cambridge, MA, 2000, p. 208.
3Tel, G., Introduction to Distributed Algorithms, Cambridge Univ. Press, Cambridge, 1994.
4Chandy, K. M. and Lamport, L., “Distributed Snapshots: Determining Global States of Distributed Systems,” ACM

Transactions on Computer Systems (TOCS), Vol. 3, No. 1, Feb. 1985, pp. 63–75.
5Garg, V. K. and Mitchell, J. R., “Distributed Predicate Detection in a Faulty Environment,” International Conference on

Distributed Computing Systems, 1998, pp. 416–423.
6Garg, V. K., “Observation of Global Properties in Distributed Systems,” SEKE, 1996, pp. 418–425.
7Garg, V. K., “Observation and Control for Debugging Distributed Computations,” AADEBUG, 1997, pp. 1–12.
8Gärtner, F. C. and Pleisch, S., “(Im)Possibilities of Predicate Detection in Crash-Affected Systems,” WSS 2001, Vol. 2194

of LNCS, 2001, pp. 98–113.
9Gärtner, F. C. and Pleisch, S., “Failure Detection Sequencers: Necessary and Sufficient Information about Failures to Solve

Predicate Detection,” DISC, Springer, 2002, pp. 280–294.
10Katz, S. and Perry, K. J., “Self-stabilizing Extensions for Message-Passing Systems,” Distributed Computing, Vol. 7, No. 1,

1993, pp. 17–26.
11Lai, T. H. and Yang, T. H., “On Distributed Snapshots,” Information Processing Letters, Vol. 25, No. 3, 29 May 1987,

pp. 153–158.
12Mittal, N., Freiling, F. C., Venkatesan, S., and Penso, L. D., “Efficient Reduction for Wait-Free Termination Detection in a

Crash-Prone Distributed System,” DISC, Lecture Notes in Computer Science, Springer-Verlag, 2005, pp. 93–107.

536

BEAUQUIER, PILARD, AND ROZOY

13Prakash, R. and Singhal, M., “Maximal Global Snapshot with Concurrent Initiators,” Proceedings of the 6th Symposium on
Parallel and Distributed Processing, IEEE Computer Society Press, Los Alamitos, CA, USA, Oct. 1994, pp. 344–351.

14Lin, C. and Simon, J., “Observing Self-Stabilization,” Proceedings of the 11th Annual Symposium on Principles of Distributed
Computing, edited by M. Herlihy, ACM Press, Vancouver, BC, Canada, Aug. 1992, pp. 113–124.

15Beauquier, J., Pilard, L., and Rozoy, B., “Observing Locally Self-stabilization,” Journal of High Speed Networks, Vol. 14,
No. 1, 2004, pp. 3–19.

16Beauquier, J., Pilard, L., and Rozoy, B., “Observing Locally Self-stabilization in a Probabilistic Way,” DISC’05: 19th
International Symposium on Distributed Computing, 2005, pp. 399–413.

17Segala, R. and Lynch, N., “Probabilistic Simulations for Probabilistic Processes,” CONCUR ’94: Concurrency Theory, 5th
International Conference, edited by B. Jonsson and J. Parrow, Vol. 836 of Lecture Notes in Computer Science, Springer-Verlag,
Uppsala, Sweden, 22–25Aug. 1994, pp. 481–496.

18Segala, R., “Modeling andVerification of Randomized Distributed Real-time Systems,” Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1995.

19Herman, T., “Probabilistic Self-stabilization,” Information Processing Letters, Vol. 35, No. 2, 29 June 1990, pp. 63–67.
20Cormen, T. H., Leiserson, C. E., and Rivest, R. L., Introduction to Algorithms, MIT Press and McGraw-Hill Book Company,

6th ed., 1992.

Shlomi Dolev
Associate Editor

537

